Understanding molecular crystals with dispersion-inclusive density functional theory: pairwise corrections and beyond.

نویسندگان

  • Leeor Kronik
  • Alexandre Tkatchenko
چکیده

CONSPECTUS: Molecular crystals are ubiquitous in many areas of science and engineering, including biology and medicine. Until recently, our ability to understand and predict their structure and properties using density functional theory was severely limited by the lack of approximate exchange-correlation functionals able to achieve sufficient accuracy. Here we show that there are many cases where the simple, minimally empirical pairwise correction scheme of Tkatchenko and Scheffler provides a useful prediction of the structure and properties of molecular crystals. After a brief introduction of the approach, we demonstrate its strength through some examples taken from our recent work. First, we show the accuracy of the approach using benchmark data sets of molecular complexes. Then we show its efficacy for structural determination using the hemozoin crystal, a challenging system possessing a wide range of strong and weak binding scenarios. Next, we show that it is equally useful for response properties by considering the elastic constants exhibited by the supramolecular diphenylalanine peptide solid and the infrared signature of water libration movements in brushite. Throughout, we emphasize lessons learned not only for the methodology but also for the chemistry and physics of the crystals in question. We further show that in many other scenarios where the simple pairwise correction scheme is not sufficiently accurate, one can go beyond it by employing a computationally inexpensive many-body dispersive approach that results in useful, quantitative accuracy, even in the presence of significant screening and/or multibody contributions to the dispersive energy. We explain the principles of the many-body approach and demonstrate its accuracy for benchmark data sets of small and large molecular complexes and molecular solids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dispersion Interactions with Density-Functional Theory: Benchmarking Semiempirical and Interatomic Pairwise Corrected Density Functionals.

We present a comparative assessment of the accuracy of two different approaches for evaluating dispersion interactions: interatomic pairwise corrections and semiempirical meta-generalized-gradient-approximation (meta-GGA)-based functionals. This is achieved by employing conventional (semi)local and (screened-)hybrid functionals, as well as semiempirical hybrid and nonhybrid meta-GGA functionals...

متن کامل

Recent Development of Atom-Pairwise Van Der Waals Corrections for Density Functional Theory: From Molecules to Solids

Van der Waals (vdW) interactions are important in numerous physical, chemical, and biological systems. However, traditional density functional theory (DFT) within local or semi-local approximations can hardly treat this interaction. Among various attempts to handle vdW interactions in DFT, semiempirical correction methods are known to present the advantages of low additional computational costs...

متن کامل

Adsorption Behaviors of Curcumin on N-doped TiO2 Anatase Nanoparticles: Density Functional Theory Calculations

The density functional theory (DFT) calculations were used to get information concerning the interaction of curcumin with pristine and N-doped TiO2 anatase nanoparticles. Three adsorption geometries of curcumin over the TiO2 anatase nanoparticles were studied in order to fully exploit the sensing properties of TiO2 nanoparticles. Curcumin molecule adsorbs on the fivefold coordinated titanium si...

متن کامل

Universal Correction of Density Functional Theory to Include London Dispersion (up to Lr, Element 103).

Conventional density functional theory (DFT) fails to describe accurately the London dispersion essential for describing molecular interactions in soft matter (biological systems, polymers, nucleic acids) and molecular crystals. This has led to several methods in which atom-dependent potentials are added into the Kohn-Sham DFT energy. Some of these corrections were fitted to accurate quantum me...

متن کامل

Correcting for dispersion interaction and beyond in density functional theory through force matching.

The force matching method is used to improve density functional theory (DFT) by designing a supplemental potential to capture the difference in atomic forces between a DFT functional and a high-quality post Hartree-Fock method. The supplemental potential has two-body terms designed to correct for dispersion and hydrogen bond interactions. The potential also has one-body terms to improve the des...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Accounts of chemical research

دوره 47 11  شماره 

صفحات  -

تاریخ انتشار 2014